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Liu, Mayer-Kress and Newell (2003) fit learning curves to movement time data and 

suggest two new methods for the analysis of learning that they claim go “beyond curve 

fitting”. Neither their curve fitting nor their new methods take account of measurement 

noise and so produce inefficient and biased results. We demonstrate these problems using 

their data, in which variance due to learning is small relative to the level of noise for most 

participants, and provide better alternatives that are more noise tolerant, more powerful 

and go “beyond curve fitting” without the extreme bias displayed by Liu et al’s methods. 
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Liu, Mayer-Kress and Newell (2003; hereafter LMN) examined learning in a 

discrete movement task, which required participants to produce a five-degree elbow 

flexion in 125ms. Their data consists of the movement times (MT) for eight participants 

over 200 trials. Figure 1 shows that changes in MT due to learning were small relative to 

the level of noise; for participants C, D, G and H only MT for the first trial was greater 

than later MTs, for E and F only the first two trials were greater, and MT for the first trial 

was less than on later trials for A. Participant B showed greater learning, but even this 

was not substantial, with MTs from only the first six trials greater than MTs from later 

trials. Evidently, any analysis of learning for these data must tolerate substantial noise. 

Noisy learning curves, such as LMN’s, are usually modelled by an equation of the 

following form: ( ) ( )θε+= tfMT , where f(t) is a deterministic function of practice trials 

(t), and ε(θ) is a random variable with zero mean (i.e., E(ε) = 0) and parameter vector θ. 

This form is implicitly assumed by LMN’s use of least-squares regression, which is 

optimally efficient if ε is normal, and asymptotically efficient even when ε is non-normal, 

under mild regularity conditions (see Jennrich, 1969). However, LMN did not fit MT, but 

instead fit “absolute error”, AE = |MT-125|.  

If the aim of fitting is to estimate f(t), least squares regression on AE is clearly 

inappropriate. When performance is variable, the mean value of AE must be greater than 

zero, even when mean MT is exactly 125ms. Figure 1 clearly illustrates that performance 

was variable. The bias induced by using AE is a function of both the level of variability 

and the distance between f(t) and its asymptote. Larger variability leads to greater average 

AE values, and as f(t) approaches asymptote the bias increases, systematically distorting 

the shape of the estimated function. In short, the function estimated by least squares 
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regression on AE is not f(t) but f(t) + B(t,θ), where B(t,θ) is the (trial and noise 

dependent) bias.  

We strongly recommend that researchers avoid the use of AE when their data 

contain noise, which is always the case for response time measures such as MT (cf. Luce, 

1986). In the following sections we report least squares regression results for LMN’s 

data, and analyse the two new methods that they propose, based on MT rather than AE. 

Our analyses of their two new methods for going “beyond curve fitting” reveal further 

problems caused by LMN’s failure to account for the effects of noise. First, however, we 

examine LMN’s statements about the most powerful method in a researcher’s armoury 

for minimising the effects of noise: averaging. 

Averaged Learning Curves 

We agree with LMN’s caution against averaging learning curves across 

participants. Brown and Heathcote (2003) provide a simple proof that an arithmetic 

average of curves has the same form as the component curves if and only if the 

component curves are linear in all parameters that vary across components. The core of 

this proof has been known since at least 1821, when Cauchy published it; the interested 

reader is referred to Aczel (1966) for extensions (e.g., averages other than arithmetic). 

Heathcote, Brown, and Mewhort (submitted) provide simple graphical and inferential 

methods of checking whether the linearity condition holds in noisy data. Their analysis of 

data from Heathcote, Brown and Mewhort’s (2000) survey of learning studies suggests 

that this condition rarely holds in practice. Brown and Heathcote show that averaging 

across exponential functions that differ in their rate parameters by as little as a single 

order of magnitude can produce an average curve better fit by a power function. Hence, 
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curves produced by averaging across participants will usually not be characteristic of 

participant curves, and any attempt to adjudicate between nonlinear models of participant 

learning should not rely on data averaged over participants. 

However, we disagree with LMNs’ caution about averaging over trials. Brown and 

Heathcote (2003) prove that averaging across trials has no effect on the form of 

exponential functions, producing a change only in the (linear) scale parameter. Because 

only a linear parameter is changed, the trial average function remains exactly exponential 

and so trial averaging will not cause a bias against the exponential form. Brown and 

Heathcote also showed that the bias induced by trial averaging of power functions is 

usually negligible, except in a region of extreme curvature, and even then only when the 

number of trials averaged is large relative to the extent of that region. Brown and 

Heathcote’s analysis of trial averages of data from Heathcote et al.’s (2000) survey 

showed that there was little effect on the relative fit of power and exponential functions. 

Trial averages are very useful because of their ability to reduce noise. For example, 

Brown and Heathcote’s trial averages produced comparable R2 values to averages across 

participants with only a minimal risk of the distortion caused by participant averages. 

Noise causes discrimination between exponential and power functions to fail, 

approaching no discrimination with extreme noise (Brown & Heathcote, in press). Hence, 

trial averaging can improve discrimination between curve forms.  

Trial averages, and generalizations of trial averages usually referred to as 

“smooths” (e.g., Bowman & Azzalini, 1997), are particularly useful for exploratory data 

analysis and graphical display of trends in noisy data, hence their popularity amongst 

researchers. The thick wavy lines in Figure 1 show broad trial averages (encompassing 50 
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trials) obtained using the widely available “locally weighted scatterplot smoother” 

(LOWESS, Cleveland, 1979). The smooth for participant A contradicts LMN’s claim that 

participant A shows no learning. Although, weak relative to the extent of the noise, there 

is a clear downward trend in the data, which is confirmed by a statistical test reported in 

the next section. Participant C, in contrast, shows a clear upward trend, which might 

arouse suspicion that fatigue effects are present. It is only with the aid of the trial 

averages that such trends become evident. 

The smooths in Figure 1 also illustrate a weakness of trial averages; they are unable 

to follow the fast changes evident in early trials. Clearly the width of trial averages have 

to be chosen to suit the rate of change in the data, and trial averages may not be suitable 

for all data. LMN’s data provides a very difficult case for the analysis of learning both 

because noise is high and because, for all but participant A, learning is largely confined to 

the first few trials. However, trial averages remain useful even in this case in order to 

check for slow variations in the right tail of the learning function that might confound fits 

of parametric curves, such as the power and exponential, which make a strong 

assumption of constancy in the right tail.  

Curve Fitting 

Table 1 provides the proportion of variance accounted for by least squares 

regressions on the MT data for the exponential ( rt
EE eBA −+ ) and power ( c

PP tBA −+ ) 

functions. These equations have two linear parameters, quantifying the asymptote (A) and 

the scale of change (B) of the learning function, and one nonlinear parameter, the 

exponential rate (r) and the power exponent (c). Unlike LMN’s AE regressions, the 

exponential is favoured in the majority of participants. Because of the possible fatigue 
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effect for participant C revealed by the smooths we used the entire data set (200 trials) 

rather than LMN’s method (using the last 100 trials to estimate A). When only the first 50 

and first 10 trials were fit for participant C the fit of the exponential remained superior. 

For all fits, the proportion of variance accounted for by both curves was significant, with 

p<.001 for all but participant C (p=.001 and p=.047 for the exponential and power 

respectively) and participant A (p=.016 and p=.04 for the exponential and power 

respectively). The latter result contradicts LMN’s statement that participant A showed no 

learning, and confirms the gradual change made evident by the LOWESS plot in Figure 

1. The thin smooth curves in Figure 1 plot the best fitting exponential (solid line) and 

power (dotted line) functions.  

LMN claim that there was “no significant difference in the percentage of variance 

accounted for” (p. 197) by the power and exponential functions.  However, they do not 

report any inferential tests of this difference, and so have no basis for their statement. 

Inferential tests can be performed using the nested model technique of Heathcote et al. 

(2000). This test requires fitting of a four-parameter function that has both power and 

exponential components, the APEX (Asymptote Power EXponential) function: 

βα −−+ tBeA t . The APEX function “nests” (i.e., has as a special case) both the power 

function (when α=0) and exponential function (when β=0). Nesting allows the 

significance of the power and exponential components to be tested using an F test: 

( )
( )( )

( )( )2

22

1, 1
1

F

RF
fNrf Rrf

RRfNF
−−

−−−
=−−−  

The subscripts F and R refer to the full (i.e., APEX) and reduced (i.e., power or 

exponential) models with f = 4 and r = 3 degrees of freedom respectively corresponding 

to the number of parameters estimated for each model. N is the number of data points. 
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The results of these tests are presented in Table 1, with R2
APEX-R2

E testing the power 

component (i.e., the loss of fit when the power component is omitted) and R2
APEX-R2

P 

testing the exponential component (i.e., the loss of fit when the exponential component is 

omitted). Highly significant evidence for a purely exponential component was obtained 

for four subjects, whereas the power component was never approached significance, 

except marginally for participant H. Examination of Figure 1 reveals that, among the 

participants with highly significant differences, B, E, and F favour the exponential 

function because of its faster approach to asymptote, and C favours the exponential 

because the power function overestimates the first point.  

Beyond Curve Fitting 

We agree with LMN that it is desirable to have tests that go “beyond curve fitting” 

in the sense of looking at more than relative goodness-of-fit of parametric models. 

However, we conceptualise this approach, somewhat differently from LMN, as being 

about non-parametric analyses, that is, analyses that are not prefaced on a particular 

parametric model or finite set of parametric models. LMN’s “fat tails indicator” (FTI), in 

contrast, is based on parametric (i.e., power and exponential) model estimates. LMN 

propose a measure called absolute FTI (λabs) to discriminate between power and 

exponential learning curves, and then extend it to a relative FTI (λrel) test, but “do not 

claim  … that this … is optimal in any sense” (p. 203).   

To test the bias and efficiency of λabs, we performed a simulation study using 10000 

noisy exponential curves and 10000 noisy power curves, created by adding normally 

distributed deviates with mean zero and standard deviation 10 to the fits reported by 

LMN for their participant B (see LMN’s Figure 2)1. We compared the model 
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discrimination performance of λabs against simply picking the model with the best fit (i.e., 

highest R2 value). According to LMN’s suggestions, we counted λabs ≤ 0 as exponential 

and λabs > 0 as power.  

The best-fit test correctly identified power curves in 96% of simulated decisions, 

whereas λabs identified the power curves at close to chance levels (48%). For the 

exponential curves, λabs was 100% correct and the best-fit test 98% correct. These results 

indicate a strong exponential bias in λabs. LMN’s relative fat-tail indicator (λrel) is even 

worse: it is provably biased against power functions. Given a noiseless power function, 

the power function estimated from the data by any competent method is exactly the same 

as the data.  This equality makes the numerator in LMN’s Equation 6 zero, and so λrel 

always incorrectly chooses an exponential model for pure power curves!  We confirmed, 

using the same simulation methodology applied to λabs, that this extreme bias also applies 

to noisy curves; λrel always classified the power data as exponential. Clearly, LMN’s FTI 

methods should be avoided. In contrast, a simple comparison of goodness-of-fit performs 

well and we recommend its use. 

LMN suggested a second method of going “beyond learning curves” that is truly 

nonparametric, their discrete proportional error change measure (Rn). Rn
 is very similar to 

the “relative learning rate” (RLR) measure which Heathcote, et al. (2000) used to 

characterise differences and similarities amongst continuous parametric learning curves 

with apparently unrelated forms. Heathcote et al.’s measure produced simpler results for 

continuous curves, and the same conclusions apply to Rn, so we use RLR here: 

( ) ( ) ( ) ( )( )∞−−= ftftftRLR ' . The prime indicates differentiation with respect to t, and 

we assume that f must be once differentiable and strictly monotonic. Constant RLR is a 
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defining feature of the exponential function, RLR = r, so average RLR directly estimates 

the exponential rate parameter. For a power function RLR decreases to zero 

hyperbolically (RLR(t) = c/t), so detecting a significant decrease in RLR with trials 

favours a power function, although not uniquely.   

Two problems arise when estimating RLR from noisy data. One problem is 

paramount for asymptotic samples, where the true RLR denominator approaches zero. As 

the true denominator approaches zero, even very small perturbations due to noise can 

produce very large fluctuations in RLR estimates. Any attempt to summarise the 

behaviour of RLR can become dominated by these effects, obscuring useful information 

about changes in MT with practice in early trials. This behaviour is evident in LMN’s 

Figures 3 and 4, where LMN use a linear regression to summarise the behaviour of the 

RLR estimates. They report that slopes were not significantly different from zero, and 

conclude that learning is exponential because RLR does not change with practice. 

However, it is evident from their Figure 4 that their estimates do not differ significantly 

from zero overall2, because they are swamped by asymptotic noise.  

The second problem with LMN’s direct calculation of Rn for each pair of trials (and 

the corresponding calculation of RLR) is that it relies on an accurate estimate of f(∞). 

Even a small error in this estimate (as might have happened due to fatigue for participant 

C) can produce extremely large distortions in RLR estimates. This approach also relies on 

having a long and stationary set of measurements of asymptotic performance, which is 

not always available or even practicable. Unfortunately, the two problems tend to 

compound each other; measurement of asymptotic performance improves the asymptote 

estimate, but also increases asymptotic noise. 
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Estimating the RLR function via regression rather than direct calculation can solve 

both problems. For the exponential, ( ) ( ) ( )( )∞−=− ftfrtf ' , and so a linear regression 

with slope r and intercept -rf(∞) is predicted in a plot of ( )2
1+− tdMT  against ( )2

1+tMT , 

where ( ) )()1(2
1 tMTtMTtdMT −+=+  estimates 'f , and ( )2

1+tMT  (the average value 

of MT over trials t and t+1), estimates f. Figure 2 shows this plot for participant B. A 

quadratic regression3 (solid line, Figure 2) revealed a significant linear (F(1,196)=28.6, 

p<.001), but not quadratic (F<1) component, with R2 = 0.129. It is evident from Figure 2 

that only the first five points provide much information about the RLR function. The first 

point is clearly highly influential; when it is removed the linear regression indicated by 

the dotted line in Figure 2 is obtained, with R2 = 0.156. Solving for the parameters we 

obtain an asymptote estimate of 124.24 and a rate estimate of 0.3345, both of which are 

in good agreement with the least squares exponential fit (124.75 and 0.350 respectively).   

For the power function, ( ) ( ) ( )( ) 1' −∞−=− tftfctf . Hence, a linear plot of 

( ) ( )2
1

2
1 +×+− ttdMT  against ( )2

1+tMT  is predicted, with slope c and intercept -cf(∞). 

Figure 2 shows this plot for participant H, as they had the strongest parametric evidence 

for a power function. Neither linear nor quadratic components were significant (Fs < 1). 

The linear slope grossly underestimates the power exponent relative to the least squares 

power fit (4.824) but only slightly underestimates the asymptote (124.2 vs. 127.0 

respectively). These results do not support the power function as an adequate model of 

learning, and indicate that one slow point (calculated from trials 1 and 2) and two fast 

points (calculated from trials 3 and 4 and 4 and 5) are highly influential.  
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Finally, if the aim is simply to investigate possible deviations from a reference 

curve form (e.g., exponential), averaging across participant RLR function estimation plots 

(e.g., over ( )2
1+∆− tMT  and ( )2

1+tMT  for the exponential) is both convenient and 

mathematically appropriate, due to their linearity. Averaging will distort the exact form 

of the non-linearity in the plot for functions of different forms, but deviation from 

linearity will still be evident and the reference curve can be rejected without confounding. 

Note, however, that this approach assumes each participant has the same curve form, 

differing only in parameters.  

Given that earlier tests favour the exponential for most subjects, we calculated an 

average RLR function estimation plot for the exponential (Figure 2). A quadratic 

regression gave R2 = 0.206, with a significant linear (F(1,196)=47.8, p<.001) but not 

quadratic (F(1,196)=2.57, p=.11) component. The best fitting linear regression line 

(R2=0.195) has a slope that only slightly overestimates the geometric mean of the rate 

parameters from the least-squares exponential fits (0.412) and the arithmetic mean of 

their intercepts (127.7 and 126.8 respectively). Given the weakness of learning and high 

noise levels for most participants, the agreement is surprisingly good. However, it must 

be acknowledged that nonparametric approaches pay a cost in power relative to 

parametric approaches, at least when the assumptions of the later are true. In LMN’s data, 

which has both little information about the systematic structure of the learning curves and 

high noise levels, only participant B provided clear results with RLR plots, and even in 

this case an influential point had to be censored. 

Brown and Heathcote (2002) suggested an alternative nonparametric approach4, 

which is more powerful because it makes a slightly more restrictive, but still plausible, 
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assumption about the form of the learning curve: that it is smooth. This method uses trial 

averaging techniques (smooths) and bootstrap estimation (e.g., Davison & Hinkley, 1997) 

to attach probability values to hypotheses of the form “this regression curve is not 

significantly different from the data generating model”. It extends Azzalini, Bowman and 

Hardle’s (1989) approach to model selection by compensating for smoothing bias. 

Confidence intervals can be obtained in a completely non-parametric manner (i.e., 

without assuming any parametric form for the noise, cf. Hardle & Marron, 1991) using a 

Wild bootstrap.  

We applied Brown and Heathcote’s (2002) method to LMN’s data.  These analyses 

returned the inferential probability values shown in Table 2. Higher probability values 

indicate greater evidence in favour of the corresponding model. Comparison of power 

and exponential model probabilities are generally consistent with goodness of fit, 

although this is not necessarily so (see Brown & Heathcote for an example where they 

clearly disagree). Figure 3 shows the smooths and corresponding confidence intervals for 

participants B and H. Table 2 indicates that LMN’s data does not have sufficient power to 

reject either model, except for these two participants.  Both models perform fairly poorly 

for participant H, and we conclude that neither is entirely adequate in this case. For 

participant B, Figure 3 shows that the power function badly underestimates early 

performance, and overestimates later performance.  The exponential model shows some 

overestimation around trial 75, but is generally much better. Figure 3 illustrates the value 

of confidence intervals generated from Brown and Heathcote’s technique – the actual 

type of misfit can be identified, even in noisy data.  
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General Discussion 

LMN suggested that traditional methods of discriminating between learning curve 

models are inadequate, and proposed two new methods to go “beyond curve fitting”. 

However, their implementation of curve fitting, using absolute error rather than the raw 

movement time data, produces biased results. When we corrected this error we found 

that, despite the high noise levels and rapid learning in LMN’s data, properly constructed 

and efficient statistical tests do clearly adjudicate in favour of an exponential function for 

half of LMN’s participants. For the remaining participants these tests also convey 

important information: that the data are too noisy to provide clear evidence either way.  

LMN’s mistake in assuming that participant A shows no significant learning 

illustrates both the importance of both formal statistical testing and of trial averages in 

detecting slow trends obscured by high levels of noise. We also reviewed evidence that 

appropriate trial averages cause little or no distortion in curve form for the sorts of 

smooth models considered by LMN. Hence, although we agree that participant averages 

should be avoided, we differ from LMN in recommending trial averaging as a useful 

method for investigating learning curves.  

Neither of LMN’s two methods for going “beyond curve fitting” are useful. The 

fat-tails indicator (FTI) is extremely biased in favour of an exponential model. Therefore, 

it is no surprise that this method provided “clearer” evidence in favour of the exponential 

model than curve fitting. Their Rn measure does not suffer from bias, but is extremely 

intolerant of noise and has little power to discriminate between curve forms. LMN 

claimed that failure to find significant decreases in Rn with practice favour an exponential 
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function. This conclusion is invalid because it affirms the null hypothesis with a test that 

demonstrably has no power.  

Our analyses have brought to light serious flaws in LMN’s methods. However, 

better methods are readily available. In the domain of curve fitting, the standard approach 

of choosing the model with best least-squares fit vastly outperformed the FTI method, 

and Heathcote et al.’s (2000) nested model testing method was shown to provide a 

powerful inferential test of curve form. Brown and Heathcote’s (2002) method, and the 

linear RLR plot method suggested here, fulfil LMN’s desire to go “beyond curve fitting” 

in that they provide information about distinctive properties of, and systematic deviations 

from, learning curve models in a truly nonparametric manner. Despite the fact that our 

conclusions about their movement time curves do not differ from LMN (we support an 

exponential model for most participants) we strongly recommend that researchers do not 

adopt their methods.  
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Footnotes 
1 This participant was chosen because they displayed the clearest evidence of learning in Figure 1. Apart 

from an overall decrease in discrimination, a similar pattern of results was obtained using a wide range of 

learning function parameters and levels of noise (SD = 5, 10, 15, 50), and similarly for LMN’s estimated 

parameters from Participants A and D. 

2 By definition any decreasing function must have RLR>0, although this might be difficult to detect in a 

power function as RLR approaches zero with practice. Hence, failure to find RLR estimates significantly 

greater than zero could be interpreted as evidence against an exponential learning curve, as its RLR remains 

greater than zero even with extended practice. We prefer an interpretation in terms of lack of power 

because of the very large fluctuations evident in RLR estimates.  

3Higher order polynomials, or alternative sets of basis functions, can also be used. Strictly, univariate 

regression is inappropriate, as ( )2
1+tMT is measured with error. However, ( )2

1+tMT  necessarily has 

less error than ( )2
1+∆ tMT , and so this approach is approximately correct and the approximation is 

convenient as univariate regression software is widely available. 

4Matlab code to perform this analysis is available from http://www.newcastle.edu.au/school/behav-

sci/ncl/software_repos.html. 
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Tables 

 

Table 1. Fits of the exponential (subscript E), power (subscript P) and APEX (subscript 

APEX) functions to MT data from all 200 trials for each participant (A..H). The F ratios, 

df=(1,195), test the R2 difference in the previous column.  

 R2
E

 R2
P R2

APEX R2
APEX-R2

E F p R2
APEX-R2

P F p 
A 0.051 0.041 0.051 0.000 0.00 0.997 0.010 2.01 0.157 
B 0.843 0.733 0.843 0.000 0.00 0.996 0.110 136.05 0.000 
C 0.082 0.040 0.082 0.000 0.00 1.000 0.042 9.00 0.003 
D 0.098 0.097 0.098 0.000 0.00 1.000 0.001 0.23 0.633 
E 0.398 0.356 0.398 0.000 0.00 1.000 0.042 13.61 0.000 
F 0.357 0.309 0.357 0.000 0.00 1.000 0.048 14.49 0.000 
G 0.167 0.170 0.170 0.003 0.63 0.428 0.000 0.00 1.000 
H 0.346 0.359 0.358 0.011 3.46 0.064 0.000 0.00 1.000 
 

Table 2. Inferential probability values from Brown and Heathcote’s (2002) method. 

 A B C D E F G H 
Exponential .504 .044 .623 .677 .594 .073 .242 .038 
Power .452 .003 .622 .692 .288 .070 .275 .034 
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Figure Captions 

Figure 1. LMN’s MT (movement time) data (dots) for each participant (A...H, see 

ordinate labels), LOWESS smooths (dash-dot lines) and best fitting exponential (solid 

lines) and power (dashed lines) functions. The target MT was 125 ms (horizontal dotted 

lines).  

 

Figure 2. Exponential (participant A, participant average) and power (participant H) RLR 

function estimation plots. Dashed lines indicate a best fitting linear regression and solid 

lines indicate a best fitting quadratic regression.  

 

Figure 3.  Nonparametric regression estimates for Subjects B and H (solid lines), along 

with pointwise 95% confidence intervals (dotted lines) on the location of these estimates 

under the assumption of either power or exponential models.  Error structure was 

modelled using 5000 bootstrap samples from the residuals; smooths were calculated 

using local linear regression with an Epanechnikov kernel of half-width h=2. 
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Figure 1 (continued) 
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Figure 1 (continued)
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Figure 2 (continues next page) 
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Figure 2 (continued) 
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Figure 3 (continues next page) 
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Figure 3 (continued) 


